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Abstract

Sparse coding algorithms have been used to model the
acquisition of VI simple cell receptive fields as well as to
accomplish the unsupervised acquisition of features for a
variety of machine learning applications. The Locally Com-
petitive Algorithm (LCA) provides a biologically plausible
implementation of sparse coding based on lateral inhibi-
tion. LCA can be reformulated to support dictionary learn-
ing via an online local Hebbian rule that reduces predictive
coding error. Although originally formulated in terms of
leaky integrator rate-coded neurons, LCA based on lateral
inhibition between leaky integrate-and-fire (LIF) neurons
has been implemented on spiking neuromorphic processors
but such implementations preclude local online learning.
We previously reported that spiking LCA can be expressed
in terms of predictive coding error in a manner that allows
for unsupervised dictionary learning via a local Hebbian
rule but the issue of stability has not previously been ad-
dressed. Here, we use the Nengo simulator to show that
unsupervised dictionary learning in a spiking LCA model
can be made stable by incorporating epochs of sinusoidally-
modulated noise that we hypothesize are analogous to slow-
wave sleep. In the absence of slow-wave sleep epochs,
the |L|o norm of individual features tends to increase over
time during unsupervised dictionary learning until the cor-
responding neurons can be activated by random Gaussian
noise. By inserting epochs of sinusoidally-modulated Gaus-
sian noise, however, the |L|y norms of any activated neu-
rons are down regulated such that individual neurons are
no longer activated by noise. Our results suggest that slow-
wave sleep may act, in part, to ensure that cortical neurons
do not “hallucinate” their target features in pure noise, thus
helping to maintain dynamical stability.

1. Introduction

Spiking neural networks (SNNs) are computational
models that mimic biological neural networks. Compared
with artificial neural networks (ANN), SNNs incorporate
integrate-and-fire dynamics that increase both algorithmic
and computational complexity. The justification for such
increased complexity is two-fold: First, by using dedicated,
potentially analog, circuit elements to instantiate individual
neurons and by exploiting the low-bandwidth event-based
communication enabled by SNNs, such networks can be im-
plemented in extremely low-power neuromorphic hardware
[2], enabling real-time remote applications that depend on
scavenged power sources such as solar recharge. Second,
there is evidence that biological neural circuits utilize spike
timing to transmit information more rapidly and to dynam-
ically bind distributed features via synchronous oscillations
[LO] [14] [[L3] [S]. The potential for mimicking the dynam-
ics of biological neural networks in fast, low-power neuro-
morphic processors has motivated several efforts to develop
such devices [3] [4]] [8] [ [L12]].

To fully exploit the potential of neuromorphic hardware,
it is likely that such devices must be able to learn from their
environment in a manner similar to biological neural sys-
tems. In particular, these devices must be able to learn, in
an unsupervised manner, how to infer representations that
support subsequent processing tasks. The Locally Compet-
itive Algorithm (LCA) describes a dynamical neural net-
work that uses only local synaptic interactions between non-
spiking leaky-integrator neurons to infer sparse representa-
tions of input stimuli [9]. Unsupervised dictionary learning
using convolutional LCA [[L1]] has been used to infer sparse
representations that support a number of signal processing
tasks [[17][16][71[6].

As originally implemented, unsupervised learning with
non-spiking LCA utilizes non-local computations, specif-



ically transpose and normalization operations performed
globally on the entire weight matrix, and further requires
signed outputs in order to represent the sparse reconstruc-
tion error. In our previous work [17], we showed that un-
supervised dictionary learning can be accomplished using
a modified Spiking LCA (S-LCA) that employs only local
computations and uses only unsigned spiking output from
all neurons. Although our previous results provide a proof-
of-concept for how neuromorphic processors can be con-
figured so as to self-organize in response to natural envi-
ronmental stimuli without sacrificing efficiency, the issue of
stability was not addressed. In this work, we use the Nengo
simulator to show that unsupervised dictionary learning in
a spiking LCA model can be made stable by incorporating
epochs of sinusoidally-modulated noise that we hypothesize
are analogous to slow-wave sleep.

2. Methods

2.1. Unsupervised Dictionary Learning with a Non-
Spiking LCA

Given an overcomplete basis, non-spiking LCA [9] can
be used to find a minimal set of active neurons that repre-
sent the input to some degree of fidelity. Each neuron can
be thought of as a generator that adds its associated feature
vector to the reconstructed input with an amplitude equal to
its activation. For any particular input, the optimal sparse
representation is given by a vector of neural activations that
minimizes the following cost function:
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where I is the input vector and @ is a dictionary of feature
kernels that are convolved with the activation coefficients
a. The feature kernels are assumed to be normalized such
that ®®7 = 1. The L, norm ||a||o simply counts the num-
ber of non-zero activation coefficients. The factor \ acts
as a trade-off parameter; larger A\ values encourage greater
sparsity (fewer non-zero coefficients) at the cost of greater
reconstruction error.

LCA finds a local minimum of the cost function defined
in Eq. by introducing the dynamical variables (mem-
brane potentials) u such that the output a of each neu-
ron is given by a hard-threshold transfer function, with
threshold )\, of the membrane potential: a = Ty(u) =
H(u — M\)u, where H is the Heaviside function[9]].

For a given input, the cost function defined in equation
is then minimized by taking the gradient of the cost func-
tion with respect to a and solving the resulting set of cou-
pled differential equations for the membrane potentials u:
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Figure 1: A non-spiking LCA model that supports unsupervised dictio-
nary learning via a residual or sparse reconstruction error layer. See Eq. (2)
and accompanying text.

where the final term in Eq. removes the self-interaction
(a neurons does not inhibit itself).

An update rule for feature kernels can be obtained by
taking the gradient of the cost function with respect to ®:
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where we introduced an intermediate residual layer R cor-
responding to the sparse reconstruction error.

For non-spiking LCA, online unsupervised dictionary
learning is achieved via a two step process: First, a sparse
representation for a given input is obtained by integrating
Eq. (2), after which Eq. (3) is evaluated to slightly reduce
the reconstruction error given the sparse representation of
the current input.

As illustrated in Figure [I] the weight update (3) resem-
bles a local Hebbian learning rule for ® with pre- and post-
synaptic activities a and R respectively. However, the com-
putation of ®7" as well as the normalization constraint ren-
ders the overall dictionary learning process a non-local op-
eration.

We have previously shown that our implementation of
non-spiking LCA can be used to learn a convolutional dic-
tionary in an unsupervised, self-organizing manner that fac-
tors a complex, high-dimensional natural image into an
overcomplete set of basis vectors that capture the high-
dimensional correlations in the data [11]. In the next sec-
tion, we show how this implementation can be adapted to
an S-LCA model that uses only local computations and un-
signed spiking output.

2.2. S-LCA Unsupervised Dictionary Learning

Our S-LCA model for unsupervised dictionary learning
is shown in Figure [2] where the superscripts indicate the
different layers (e.g. al denotes the input spikes). We re-
place the non-spiking leaky-integrator model of Eq. 2] with
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Figure 2: S-LCA with unsupervised dictionary learning. &7 now de-
notes a separate set of connections that are initialized to be equal to ®
and obey a numerically identical learning rule with pre and post synaptic
factors flipped.

a leaky integrate-and-fire (LIF) model consisting of a mem-
brane potential, u, and a binary spiking output, a:
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where A again plays the role of a threshold that controls the
level of sparsity and Wy, is the sum of the input received
from connected neurons. When u crosses the threshold A a
spike is generated and w is reset to zero.

As with non-spiking LCA, the residual layer R in
S-LCA is driven by the difference between the input and
the reconstructed input generated by the LCA layer, which
for S-LCA is given by al — ®al. Values of (a®) above
and below the target baseline firing rate (af), encode pos-
itive and negative errors, respectively. Eq. ] for the residual
layer R then becomes

a® o« —u® + al — ®dal. (6)

We augment Eq.[6] with a firing condition analogous to Eq.[3]
with A — AR,
The input to the sparse coding layer L in Figure [2]is de-

noted by u}’nput, given by,
uianut = (I)TaR‘ (7)

Likewise, in Figure 2] the LCA layer L is again an LIF
layer whose equation of motion is given by:
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where a/(al) is a self interaction involving the low-pass fil-
tered (trace) of the spiking output that helps to maintain fir-

ing activity when the residual error is zero. The constant

o = 0.75 and the trace time constant 500 msec were deter-
mined empirically to produce improved sparse reconstruc-
tions without ringing or overshoot. We again augment Eq.
with a firing condition analogous to Eq. With A — AL

Unsupervised dictionary learning can be used to update
the weight matrices ® given only information locally avail-
able at each synapse. To compute the weight updates, we
introduce the low-pass filtered spike trains, or instantaneous
firing rates or traces, of the LIF neurons in the residual layer
(aR) = (a®) — (aF)( computed relative to the target base-
line firing rate of the residual layer. The firing rates of the
LIF neurons in the sparse coding layer (a) are likewise
represented as low-pass filtered versions of the correspond-
ing spike trains. In terms of these local firing rates, the up-
date of @ is given by a local Hebbian learning rule:

Ad x (al) ® (aR). ©

The traces time in the local Hebbian learning rule are 100
msec.

3. Results

3.1. Instability of unsupervised learning without
sleep

In our previous work [17], we showed that unsuper-
vised dictionary learning can be accomplished using a mod-
ified Spiking LCA (S-LCA) that employs only local com-
putations and uses only unsigned spiking output from all
neurons. Although our previous work provide a proof-of-
concept for how neuromorphic processors can be config-
ured so as to self-organize in response to natural environ-
mental stimuli without sacrificing efficiency, the issue of
stability was not addressed.

As indicated in In Figure [3]and Figure ] in the absence
of slow-wave sleep epochs, the |L|2 norm of individual fea-
tures tends to increase over time during unsupervised dic-
tionary learning until the corresponding neurons become
continuously activated. The features learned in the absence
of sleep epochs are initially reasonable (Figure [5) but ulti-
mately become meaningless as the system becomes unsta-
ble.

3.2. Stability of learning with slow-wave sleep

As illustrated in In Figure [ we used sinusoidally-
modulated noise that we hypothesize is analogous to slow-
wave sleep. Shown is the norm of the stimulus over one
slow-wave sleep cycle. Nothing about the model or learning
rule changes during slow-wave sleep. The only difference
between “wakefulness” and slow-wave sleep is the input
stimuli to the system (see Figure 9] and Figure[I0). During
wakefulness, the input stimuli consist of natural gray-scale
images which can be sparsely reconstructed from learnable
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Figure 3: Spikes (bottom) and spike trace (top) from a representative S-LCA neuron without sleep. In the absence of slow-
wave sleep epochs, the |L|o norm of individual features tends to increase over time during unsupervised dictionary learning
until the corresponding neurons are continuously activated. Individual spikes cannot be resolved at this level of resolution.
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Figure 4: Representative residual layer neuron spikes (bottom) and spike trace (top) without sleep. As the gain of the feedback

loop increases, the residual layer becomes persistently active.

(b) Some training

(a) Before training (c) More training

Figure 5: Top 64 most active dictionary elements without
slow-wave sleep.

features. During slow-wave sleep, however, the stimulus
consists of random Gaussian noise that is not learnable.

As indicated in Figure [7] and Figure [8] by inserting
epochs of sinusoidally-modulated Gaussian noise, the |L|2
norms of the feature vectors associated with neurons acti-
vated during slow-wave sleep are down regulated such that
individual neurons are no longer persistently active. In par-
ticular, neurons dynamically adjust their gain during slow-
wave sleep so as not to be activated by random Gaussian
noise. Instead, as in the representative S-LCA neuron de-
picted, activity is only sparsely induced by a limited subset
of natural stimuli. On occasion, S-LCA neurons are ac-
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Figure 6: Sinusoidally-modulated noise that we hypothe-
size is analogous to slow-wave sleep.

tivated by sinusoidally-modulated Gaussian noise but any
such activations come to be repressed over successive slow-
wave sleep cycles. Our approach is consistent with evidence
that long term potentiation changes occur during wakeful-
ness due to a net increase in synaptic weights, and slow
wave sleep is necessary to promote generalized depression
of synapses [13].

Example reconstructions of a natural stimulus over the
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Figure 7: Representative S-LCA neuron spikes (bottom) and spike trace (top) with slow-wave sleep. By inserting epochs of
sinusoidally-modulated Gaussian noise, the | L|> norms of any neurons activated during slow-wave sleep are down regulated
such that individual neurons are no longer activated by random Gaussian noise. As a result, neurons are sparsely activated by
only a subset of natural stimuli and rarely by random noise.
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Figure 8: Representative residual neuron spikes (bottom) and spike trace (top) with slow-wave sleep. Although the trace does
not always tend to the baseline value indicting zero residual, we observe that average residual does diminish with continued

unsupervised training.

course of unsupervised training with slow-wave sleep are
shown in Figure [T1] and Figure[12] Corresponding learned
features are shown in Figure [[3] As dictionary elements
converge toward more meaningful features, the correspond-
ing reconstructions become more accurate. Computational
constraints prevented us from continuing these experiments
until the dictionary was fully converged. However, includ-
ing epochs of sinusoidally-modulated noise hypothesized to
be analogous to slow-wave sleep produced stable sparse re-
constructions that steadily improved with further unsuper-
vised training whereas the system became dynamically un-
stable in the absence of slow-wave sleep even when using
identical random weight initialization parameters and learn-
ing rates.

3.3. Conclusion

Although our previous work [17] provide a proof-of-
concept for how neuromorphic processors can be config-
ured so as to self-organize in response to natural environ-
mental stimuli without sacrificing efficiency, the issue of
stability was not addressed. In this work, we use the Nengo
simulator to show that unsupervised dictionary learning in
a spiking LCA model can be made stable by incorporating

epochs of sinusoidally-modulated noise that we hypothesize
are analogous to slow-wave sleep.
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